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Item 13 continued
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These features dominate both Pg and Lg amplitude spectra at frequencies less
than 7 Hz. Accurate modeling of the observed spectra at frequencies greater
than a few Hertz requires that the azimuth of the recording site be taken
into account. Also, the spectra at higher frequencies become sensitive to
random variations in the firing times of any of the various subexplosions.
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INTRODUCTION

The successful monitoring of smaller underground nuclear

explosions at regional distances requires the ability to

discriminate those tests from ordinary industrial explosions (mine

and quarry -blasts) and from natural earthquakes. Recent studies

-have demonstrated that the practice of delay or ripple firing

commonly used for industrial explosions often produces observable

modulations in the amplitude spectra of regional seismic signals

that is not observed in earthquakes (Baumgardt and Ziegler, 1988;

Smith, 1989; Hedlin et al, 1989; Baumgardt and Young, 1990; Hedlin

et al, 1990). The form of the delay-fired explosion spectrum

depends upon, among other factors, the physical layout of the

charges, the charge sizes, the delay time intervals between the

various individual explosion sequences and the azimuth of the

recording station from the source. Because single event sources

such as smaller earthquakes or nuclear tests tend not to produce

modulated source spectra, the observation of significant spectral

modulations could provide a useful discriminant. However, path

and receiver effects may complicate the situation. For example,

the spectra of the regional seismic phases Pn, Pg, Sn and Lq can

be influenced by the structure of the crustal waveguide and the

anelastic absorption process will diminish spectral enhancements

at high frequencies. The resonance effects of near surface, low

velocity material at the source and at the receiver also can, in

principle, introduce spectral modulations.



In this study, we examine the spectra recorded at near

regional distances from large surface mining explosions and

compare them with theoretical spectra derived on the basis of

information provided in the blaster's logbooks. Additionally, we

compare the explosion signals with those of some small earthquakes

in the same source region, featuring similar propagation paths to

the recording stations. We study the cause of the observed

modulations in the explosion spectra, the effect of different

source-station propagation paths and site response on the spectra,

and the spectral differences observed between the explosions and

the earthquakes.

The data set is derived from digital waveforms recorded by the

Virginia Regional Seismic Network. Figure 1 shows the locations off

the network stations, along with the locations of the four

explosions and the epicenters of the two earthquakes employed in the

study. The network utilizes 1 Hz seismometers. The analog seismic

signals are transmitted to a central recording facility by FM

telemetry and digitized at 100 samples/sec. The time series of

these six events are shown in Figure 2, as recorded at station WMV.

Exrlosion Sptal Modulaton

Generally, surface mine or quarry blasting operations employ

explosive charges in holes that are arranged spatially in one or
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more rows. The individual charges are usually fired in a time

sequence designed to achieve objectives such as proper rock

breakage, reduction of fly rock and directed movement of the

fractured rock mass away from the free face of the quarry. The

time intervals (delays) between the individual subexplosions may

be on the order of a few milliseconds to hundreds of milliseconds,

depending on the application (Langefors and Kihlstrom, 1963; E.I.

du Pont de Nemours & Co., 1978). For large mining explosions

similar to those studied here, a variety of different delays may

be employed.

Baumgardt and Ziegler (1988), Smith (1989) and Hedlin et al

(1990) discuss the origin of spectral modulations in regional

seismograms of industrial explosions. Assuming that the explosion

source-time function is a linear superposition of individual

subexplosions (Stump and Reinke, 1988), we can n.odel the explosion

source by convolving a source wavelet S(t) with an impulse series

W(t). In addition to the firing times of the subexplosions, W(t)

must also incorporate the spatial distribution of the charge

holes, the azimuth of the receiver and the wave velocity of the

material. The source-time function, A(t), for an explosion with n

subexplosions observed at distances large in comparison to the

dimension of the charge layout, is given by

A(t) = S(t) * W(t), (1)
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n

where W(t) = a.8(t - ti), (2)
j=1 j

and t' = - (x. sine + y. cose)/V. (3)

Here, 5(t) is the Dirac delta function, Tj is the time of the j'th

subexplosion defined relative to the time of the initial

subexplosion, xj and yj are the coordinates of the j'th

subexplosion in a coordinate system with origin at the location of

the initial subexplosion. The constant j represents the

amplitude of the subexplosion. The azimuth 0 from origin to

recording station is measured clockwise from the Y axis and V is

the phase velocity. The amplitude spectrum A(O)) of the source-

time function is given by

A(O) = IS(W)W(o) I, (4)

n
-where W(w)=X ca.exp(icOn) (5)

j=1 J )

Consider a simple case where a row of 10 holes with equal

charges is fired sequentially from one end with a constant delay

(T - 1j_l)of 25 msec, resulting in an explosion of duration 0.25 sec

(Figure 3). For simplicity, assume that S(t)= 8(t), and a hole

spacing (xj - _ ) of 4 meters and a velocity V of 3000 m/sec.

The modulation of A(0) in this case, regardless of station azimuth

8, involves two dominant effects. The first is amplitude

reinforcement due to the constant time intervals (delays) between
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subexplosions. This reinforcement occurs at frequencies which are

approximately integer multiples of the inverse delay interval.

The second effect is spectral "scalloping," characterized by

amplitude minima at frequencies given approximately by integer

multiples of the inverse duration of the explosion sequence. in

the case for 0=0 deg, the resulting spectrum is exactly that of

the delay time series, with spectral reinforcements at 0, 40, 80

Hz, and spectral minima at 4, 8, 12 ... Hz (Figure 3). For

0=90 deg, the apparent delays between the explosions (as seen from

the station) are shortened by a Doppler-like effect, due to the

progression of the shotpoint in the direction of the receiver, and

the finite wave velocity. Hence, the spectral reinforcements and

minima appear at higher frequencies (Figure 4, top). The opposite

effect happens for a receiver on an azimuth in the opposite

direction: the reinforcements and spectral minima are shifted to

lower frequencies. In actual practice, there may be significant

variation in individual delay times, due to variations in the

lengths and firing rates of detonating cords and blasting caps.

This type of variation serves to reduce the amplitudes of the

higher frequency reinforcement harmonics, and effectively "fills

in" the spectral minima. Figure 4 (bottom) shows the spectrum

resulting from the previous case (0= 0 deg) when a random error

with zero mean and standard deviation eqV L to 10% of the mean

delay time is added to the times of the subexplosions. This

"whitens" the spectrum by reducing the amplitude of the high

frequency peak at 80 Hz and filling up the high frequency minima.

Note that the effect of station azimuth and random variation of



firing times is minimal for the low frequency part of the

spectrum.

Real explosions often incorporate multiple rows of charge

holes which may be "decked" (i.e., separate delays for upper and

lower parts of a single hole). The firing of multiple rows is

generally done sequentially, with relatively large delays between

rows so as to allow time for the fractured rock mass to move away

from the newly created free face. These row delays may produce

important amplitude reinforcements at relatively low frequencies.

Figure 5 shows the time series for a case where four rows of 10

holes each are fired with 0.11 sec delays between rows. Note, for

example, that the second row's first hole is detonated just after

the fifth hole of the first row. Thus the 0.11 sec delay between

rows refers to the initiation times of each row of charges. As in

the previous case, the delays between firings of adjacent holes in

a row is 0.025 sec, and the azimuth 0 is 0 deg. Figure 5 (bottom)

also shows the resulting spectrum. The row delays produce

additional amplitude reinforcements at n/0.11 Hz or 9.1, 18.2,

27.3 Hz... etc. The longer duration of the explosion sequence

(0.58 sec) produces a "scalloping" effect with amplitude minima

more closely spaced in frequency, compared to the previous case

for a single row of charges.

Ep1si-n qoiire- Information

The explosions studied here were fired to remove the soil and

rock overburden from coal seams. We obtained copies of the
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blaster's logs and have used the information contained therein to

model the explosion source amplitude spectrum using equations 1

through 5.

The detail of information contained in the logs varied among

the individual explosions. However, in all cases, the firing

times of each charge could be ascertained. Other pertinent

information contained in the logs included the distance between

rows (burden) and between holes in a row (spacing), the types of

millisecond delay connectors used (9,17,42 and 200 msec, in

various combinations), the types of downhole delay blasting caps

(450 or 500 msec), the total charge weight used for each hole and

the maximum weight per delay period. Important ambiguities in the

logs involve the distribution of charge weight within some of the

decked holes for three of the four explosions: also, the

detonation velocity of the surface and downhole detonating cord is

not specified. All explosions were fired using detonating cord

and millisecond delay connectors between holes. The main charge

was a mixture of ammonium nitrate and fuel oil, initiated by a

small primer charge using nonelectric downhole blasting caps. The

copies of the blasting logs and other information, such as the

orientation of the charge pattern with respect to North, were

kindly furnished by the Kentucky Department of Mines and Minerals

(written communication).



Explosion 1: 5/22/90

This explosion is well documented in the logbook, and the

charge weight for each delay period is known. Figure 6 shows the

charge pattern. It consisted of four rows of decked charges with

the initiation point in the center of the row adjacent to the free

face. The burden and spacing were 8.8 and 12 meters,

respectively. The majority of delays used between holes in a

given row were 17 msec, and each row was delayed 200 msec. The 56

charge holes were 31 cm in diameter and were drilled to a depth of

34.1 m. The lower part of each hole was loaded with 1877 lbs of

explosive. The bottom charge was separated from the top charge of

2248 lbs of explosive by a 3 meter deck of drill cuttings. The

top charge was fired using a 450 msec delay nonelectric cap: the

bottom charge was delayed 50 msec by using a 500 msec nonelectric

cap. Figure 6 shows the delay time series W(t) for a station

azimuth of 307 deg.

Expaosion 2: 6/12/90

This explosion consisted of five rows of charges and was more

complex than Explosion 1, having an asymmetrical first row

(Figure 7). This first row of 11 holes was loaded with 2885 lbs

of explosives in 25 cm diameter holes drilled to 33.8 m. The

remaining 84 holes were 31 cm in diameter and were loaded with

4642 lbs of explosives. All holes are assumed to be decked with

upper and lower charges having downhole delays of 450 and 500



msec. Unfortunately, the logbook does not specify the charge

weight distribution for upper and lower decks. Unannotated

drawings in the logbook suggest equal weights for the decks in

rows 1, 4 and 5. A weight ratio of 2/1 (upper/lower) is suggested

for rows 2 and 3. Burden and spacing were 9.1 and 11.6 m,

respectively.

Explosion 3: 7/9/90

This explosion consisted of 4 rows, fired sequentially from

one end (Figure 8). Diameter and depth of the holes were 31 cm

and 36 m. Burden and spacing were 9.1 and 11.6 m, respectively.

Again, the log is not specific about the charge distribution

between the upper and lower decks. For modeling, the specified

weight of 4985 lbs per hole was distributed equally between the

upper and lower decks in rows 3 and 4, and with a ratio of 3/1

(upper/lower) in rows 1 and 2, on the basis of unannotated

drawings in the logbook.

Explosion 4: 9/7/9Q

This explosion involved 84 holes (31 cm X 37 m), each loaded

with 4872 lbs of explosives. There is uncertainty as to whether

or not the charges were decked for this explosion. The modeling

was performed for both decked and undecked assumptions. For the

decked explosion, an upper/lower charge weight ratio of 2/1 was
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assumed (Figure 9). Burden and spacing were 9.1 and 11.6 m,

respectively.

Observed Explosion Spectra versus Theoretical

The explosions studied here produced time independent

spectral modulations. This phenomenon has been noted previously

(see, e.g., Baumgardt and Ziegler, 1988) from industrial

explosions, and is an indication that the modulations are source

related and not due to multipathing. It is most apparent when the

data are displayed in a sonogram or time-frequency plot wherein

the spectral content of the entire signal is plotted as a function

of time.

Figure 10 shows a sonogram for Explosion 2. It was created

using an approach similar to that of Hedlin et al (1989).

Instrument corrected acceleration power spectra were computed

using non-overlapping five second windows, for times beginning

well before the signal onset and extending into the signal coda.

The spectra were detrended and amplitude normalized by subtracting

a second degree polynomial fitted by least squares to the

logarithms of acceleration power. Noise correction was performed

by contouring only those values which exceed the pre-signal noise

levels by a factor of 5. Note that the spectral peaks persist

throughout the signal, from P onset to well within the Lg coda.

In Figures 11 through 16, we compare the acceleration

amplitude spectra of Lg and Pg with theoretical spectra for each

of the four explosions. All spectra have been corrected for
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instrument response and anelastic attenuation. The assumed Pg and

Lg quality factor is Q=811f 0 .42 (Chapman and Rogers, 1989). As a

preliminary, Figure 11 shows the Lg spectra recorded at WMV from

Explosion 1, along with the pre-P noise background. Both spectra

were calculated using 20 second time windows, and smoothed using a

4 point moving average filter. Note that the signal/noise ratio

exceeds 2 at frequencies less than 15 Hz. This station, along

with station VWV, gave the best signal/noise ratios for the

explosions being studied.

Figure 12 shows the vertical component Lg acceleration

spectrum (-20 sec window) at stations WMV, VWV and CVL, in

comparison with the theoretical source acceleration spectrum for

Explosion 1. The observed spectra are plotted at frequencies

-where the signal/noise ratio exceeds 2. The theoretical model

assumes a Brune (1970) 0)2 amplitude spectrum for the source

wavelet: hence, in equation (4),

S(O 0) 2 (6)2
(I)

c

Trial and error modeling indicates a corner frequency of 3 Hz

((,=6n) for Lg. The amplitude of the subexplosions are scaled in

proportion to charge weight: i.e., a in equation (5) is charge

weight in thousands of pounds. Note the good agreement between

observed and theoretical spectra at frequencies less than about 7

Hz. The similarity of spectra at the three stations clearly
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demonstrates that the significant modulations at low frequency are

path and site independent.

Various values for the phase velocity V were tested, and it

was found that 3000 m/sec gave good agreement for the Lg spectrum.

The lower frequency parts of the theoretical spectrum (less than 5

Hz) are insensitive to velocity V and station azimuth 0. However,

these parameters become increasingly important at higher

frequencies, and must be taken into consideration.

A potential for error in the modeling of the high frequency

spectrum exists because of uncertainty involving the detonation

velocity and arrangement of the surface and downhole detonating

cord. In the case of all four explosions, it is assumed that the

time delays introduced by the detonating cord have negligible

effect on the amplitude spectra at the relatively low frequencies

where we have adequate signal/noise ratios. Modeling of the

effect shows little impact on the spectra at frequencies less than

20 Hz if the detonation velocity is in excess of 6000 m/sec.

Figure 13 shows the Pg acceleration spectrum from Explosion 1

at WMV, VWV and CVL. The Pg spectra were derived from 6 second

time windows, and the spectra were smoothed with a 2 point moving

average filter. Agreement between the Pg spectra and the model

spectrum is not as good as for Lg. This may be due in part to the

lower signal/noise ratios for Pg compared to Lg. Also, the Pg

spectra appear to have more energy at high frequency (relative to

low frequency energy) than do the Lg spectra shown in Figure 12.

Hence, the theoretical spectrum was calculated using a source

12



wavelet corner frequency of 10 Hz. The best fitting velocity was

5200 m/sec.

The Lg acceleration spectra for Explosions 2, 3 and 4 are

shown in Figures 14 through 16. As in the previous example, the

spectra were smoothed and plotted at frequencies where the

signal/noise is greater than 2. Although the exact charge weight

distribution is in question for these explosions, the overall

shape and the frequencies of peaks and troughs in the observed

spectra match those of the theoretical spectra well. Again, the

theoretical Lg spectra source wavelet corner frequency is 3 Hz,

and the velocity assumed is 3000 m/sec.

The appearance of the spectra from all four explosions at

frequencies less than about. 7 Hz is readily explained in terms of

two effects. The most obvious aspect of the spectra are the

amplitude minima at approximately 1.2, 2.3 and 3.4 Hz. These are

directly related to the apparent duration of the explosion

sequence and coincide with the amplitude nulls in the amplitude

spectrum of a boxcar (square wave) time function of duration T

sec. The frequencies of the amplitude nulls are given by n/T,

where n=1,2,3,... etc. The apparent duration T of Explosions 1

through 4 are 0.90, 0.93, 0.85 and 0.84 seconds, respectively.

The other major aspect of the observed spectra is the

persistent strong amplitude peak near 5 Hz. This peak is the

result of reinforcement due to a nominal row delay of 0.2 sec used

in all of the explosions.

13



Earthquake Spectra

Two small earthquakes which occurred in eastern Kentucky

-provide an opportunity to compare spectra from known explosions

and- earthquakes over similar source-station paths (Figare 1).

Figures 17- and 18 show the amplitude spectra of unclipped portions

of the Lg phase from the earthquakes. Comparison with Figures 12

through 16 indicates that the earthquake acceleration spectra are

much flatter than the explosion spectra, exhibiting larger

amplitudes at high frequency (>6 Hz) relative to low frequency

amplitudes (<6 Hz). Examination of the earthquake sonograms

(Figures 19 and 20) shows no evidence o7 time independent spectral

modulation.

CONCLUSIONS

The surface mine explosions studied here produced signals at

near regional distance featuring time independent spectral

modulations of the type previously reported by Baumgardt and

Ziegler (1988), Smith (1989), Hedlin et al (1989), Baumgardt and

Young (1990) and Hedlin et al (1990). Thb e .nant features of

the modulation are independent of recording site and source-

station path. In contrast, natural ea.tnquakes which occurred in

the mine locale exhibit much flatter acceleration spectra, with

substantially larger high trequency amplitudes, and show no

evidence of time independent spectral modulation.

14



Tho explos ion :pf'ct. ra were 1r1'O',; f 13.117 rep roduced at low

freciuency using ii nimple sour-,. modol. The r,,ost obv/)ous

chviracterist 1c., of: the explosion arr ampi Itum~de minima

cont-rolled by the totalt durat.ion of the e:'plosionr seqience, and

amplitude reinforcement due to relatively long (0.2 sec) delays

between the firinq of multiple rows of oxplosive.. The model

!npectra at low frequency are relatively inse(nsitive to station

azimuth and phase velocity. However, as frequency increases,

these parameters become important. Additionally, any random

variation in the firing times of subexplosions strongly affects

the high frequency spectrum. The agreement between the model Lg

* spectra and the observations is so good as to imply that for the

* study area at least, the Earth's transfer function for low

frequency Lg waves is very simple: i.e., it acts primarily as an

ideal low pass filter in terms of amplitude response.

The Pg and Lg explosion spectra show similar amplitude

modulations. The Lg spectra more closely matched the model

spectra, but this may be due to larger Lg signal/noise ratios.

Interestingly, the Pg spectra appear to have relatively larger

amplitudes at high frequency than do the Lg spectra. The Lg

spectra suggest a source corner frequency of approximately 3 Hz

for the individual subexplosions, whereas the Pg spectra corner

frequency appears to be approximately 10 Hz. However, this

observation may reflect some sort of path effect, not accounted

for by the simple anelastic attenuation model we have used in

comparing the observed spectra with the theoretical model.

', 15
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Figure 6: (Top) Charge pattern for Explosion 1 (plan view).
Locations of each hole are indicated by small circles. Numbers
above each circle indicate firing time (sec) of upper charge and
charge weight (thousands of pounds), respectively. Numbers below
circle refe: to lower charge firing time and charge weight.
(Bottom) Time series of Explosion 1, assuming station azimuth 307
deg, and phase velocity 3000 m/sec. Amplitude is charge weight in
thousands of pounds.

23

L



30
3.11 33 33? 1 11 33 333 311 3i 33?3 13 333? 3 31 2313? 3? 3 1 M ~ 2 31 111 U21

20 1113I ISI 313311 33? 311 UP 3111 311" M 3 12't I33 33 311 33 12 Hit 1 31 ? 331 21 B.itl21

201 12111 i il I 31 311 I 33Ii1 33? 3333 M I3 33I'l? 3113 333 333 Si 33321 1312? 333112 3M3 2 3 31 1 321

10 Sall 331 831? 3.8? 1 38H I 3M3 5 1 333011 93 I3I%11 381? 333? 33Msll? S.O3 IM3 l? 3 1 3 8,33 3 811 1 33?

15

3Z1 3 1 3 8 it'ss S 3311 28A 311 31 341. 1 311313 Sig 31 38~,13 11 31 3811 3313 38B 89Hi W 384308 0778 . 0
, 13 0, 0.3 3313 331 Y 33 31 U 93 0.11 , 3 31331 ' ' 31 313 03 U3

M 7.131 3?" I 1 313 3'3, o 31 033 3333 11 31 1 311331 11 3833 383 81; 311

0.1 3.53
310 3.0-3-33331 33 11 11 ~ 3 33 .3

4.0
0 1~ .5

E 1.0-

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Time (Sec)

Figure 7: (Top) Charge pattern for Explosion 2 (plan view).
Locations of each hole are indicated by small circles. Numbers
above each circle indicate firing time (sec) of upper charge and
charge weight (thousands of pounds), respectively. Numbers below
ci~rcle refer to lower charge firing time and charge weight.
(Bottom) Time series of Explosion 2, assuming station azimuth 327
deg, and phase velocity 3000 in/sec. Amplitude is charge weight in
thousands of pounds.
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Figure 8: (Top) Charge pattern for Explosion 3 (plan view).
Locations of each hole are indicated by small circles. Numbers
above each circle indicate firing time (sec) of upper charge and
charge weight (thousands of pounds), respectively. Numbers below
circle refer to lower charge firing time and charge weight.
(Bottom) Time series of Explosion 3, assuming station azimuth 115
deg and phase velocity 3000 m/sec. Amplitude is charge weight in
thousands of pounds.
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Figure 9: (Top) Charge pattern for Explosion 4 (plan view).
Locations of each hole are indicated by small circles. Numbers
above each circle indicate firing time (sec) of upper charge and
charge weight (thousands of pounds), respectively. Numbers below
circle refer to lower charge firing time and charge weight.
(Bottom) Time series for Explosion 4: assuming station azimuth 125
deg and phase velocity 3000 m/sec. Amplitude is charge weight in
thousands of pounds.
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Figure 11: Vertical component Lg acceleraLz-on speetaum and pre-P
wave noise amplitude spectrum for Explosion 1. Spectra were
calculated using 20 second time windows and were smoothed using a
4 point moving average filter.
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Figure 13: Solid lines show vertical component Pg acceleration
spectra for Explosion 1, at stations CVL, VWV and WMV. Dashed
line shows model spectrum. Amplitudes have been scaled to
separate the spectra on the plot.
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Figure 17: Solid lineLs show vertical component Lg acceleration
spectra (unclipped) for th . magnitude 3.5 Kentucky - Virginia
border earthquake of November 27, 1987. Twenty second tire
windows were used, and the spectra were smoothed using a 4 point
moving average filter. Dashed lines show the pre-P wave noise
spectrum. The amplitudes have been scaled for separation on the
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earthquake Of Augost 17, 19911, Twenty jecond time w~ndown w,-ru
usad and thC SPectra were sroothvd uu:nq e. 4 point moving average
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